首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   43篇
  免费   0篇
地球物理   9篇
地质学   9篇
海洋学   14篇
天文学   10篇
综合类   1篇
  2014年   2篇
  2010年   2篇
  2009年   1篇
  2008年   2篇
  2007年   3篇
  2006年   2篇
  2005年   5篇
  2004年   4篇
  2003年   2篇
  2002年   1篇
  2001年   1篇
  2000年   1篇
  1998年   2篇
  1996年   2篇
  1995年   1篇
  1989年   2篇
  1988年   1篇
  1987年   5篇
  1986年   1篇
  1984年   1篇
  1983年   1篇
  1981年   1篇
排序方式: 共有43条查询结果,搜索用时 46 毫秒
31.
1 INTRODUCTIONThe eastern Nankai Trough is a submarinetrench reflecting subduction zone where the earth'soceanic crust plunges beneath Japan Islands andcharacterized by extreme topographic relief (Fig.1).The convergent margin off Japan is characterizedmorphologically by numerous deep sea channels(such as the Nankai channel and Zenisu channel),which are closely related to the subduction proc-esses. Channel systems are considered to represent adistinct deep water sedimentation environmen…  相似文献   
32.
Seabeam mapping and detailed geophysical surveying have been conducted over the Nankai Trough where the fossil Shikoku Ridge is subducted below southwest Japan. The geometry of the oceanic lithosphere bending under the margin as well as the three-dimensional structure of the accretionary prism have thus been determined in detail. Three 350° trending, probably transform faults have been identified in the area of the survey. They do not extend further south and appear to be limited to the last phase of spreading within the Shikoku Basin, probably between 15 and 12 Ma; this last phase of spreading would then have been accompanied by a sharp change in spreading direction from east-west to N 350°. The two eastern transform faults limit a zone of reduced Nankai trench fill of turbidites opposite to the Tosa Bae Embayment. This observation suggests that the Tosa Bae Embayment actually results from this reduced supply of trench fill to the imbricate thrusting process. The accretionary prism can be divided into three different tectonic provinces separated by continuous mappable thrusts, the Lower and Upper Main Thrusts. Surface shortening is limited to the lower accretionary prism south of the Upper Main Thrust (UMT) whereas uplift with possible extension characterizes the prism above the UMT. Deformation, due to the relative plate motion, mostly affects the lower accretionary prism south of the UMT.  相似文献   
33.
A detailed topographic and geophysical survey of the Daiichi-Kashima Seamount area in the southern Japan Trench, northwestern Pacific margin, clearly defines a high-angle normal fault which splits the seamount into two halves. A fan-shaped zone was investigated along 2–4 km spaced, 100 km long subparallel tracks using narrow multi-beam (Seabeam) echo-sounder with simultaneous measurements of gravity, magnetic total field and single-channel seismic reflection records. Vertical displacement of the inboard half was clearly mapped and its normal fault origin was supported. The northern and southern extensions of the normal fault beyond the flank of the seamount were delineated. Materials on the landward trench slope are displaced upward and to sideways away from the colliding seamount. Canyons observed in the upper landward slope terminate at the mid-slope terrace which has been uplifted since start of subduction of the seamount. Most of the landward slope except for the landward walls aside the seamount comprises only a landslide topography in a manner similar to the northern Japan Trench wall. This survey was conducted on R/V “Jean Charcot” as a part of the Kaiko I cruise, Leg 3, in July–August 1984 under the auspices of the French-Japanese scientific cooperative program.  相似文献   
34.
We report a series of short‐term (diurnal) rock surface monitoring studies on inter‐ and supra‐tidal shore platforms using a traversing micro‐erosion meter at two sites, Kaikoura Peninsula, New Zealand, and Apollo Bay, Victoria, Australia. Statistically signi?cant day‐to‐day changes were measured. Surface rise and lowering occurred at rates above instrument error, with a maximum range of 3·378 mm between 1·697 mm (lowering) and ‐1·681 mm (rise). Individual measurements showed rises greater than 2 mm. These daily variations reveal that surface lowering and rise occur at a much shorter time scale than previously reported from other studies. The patterns observed suggest wetting and drying is the most likely process causing surface changes at these temporal scales. We argue that traversing micro‐erosion meter studies operating at a short‐term time scale of day‐to‐day provide meaningful results that open new opportunities for studying rock weathering and erosion in a coastal environment. Copyright © 2004 John Wiley & Sons, Ltd.  相似文献   
35.
Current-generated bedforms were found on sandy seafloor at water depths of 200–400 m on the northern Izu Ridge, where the Kuroshio Current encounters and passes over the ridge. The observed bedforms include large dunes and sand ribbons and are interpreted to be products of present-day oceanographic conditions and to indicate intensive flow activity controlled by local topography. A comparison between the surface flow velocity estimated from empirical relationships for dune formation and the observed flow velocity suggests that the dunes are generated when the main axis of the meandering Kuroshio Current passes through this area, and that subsequent current velocities are sufficiently high to maintain the dunes up to the next event.  相似文献   
36.
The Zenisu deep-sea channel originates on the Izu-Ogasawara island arc, and disappears in the Shikoku Basin of the Philippine Sea. The geomorphology, sedimentary processes, and the development of the Zenisu deep-sea channel were investigated on the basis of swath bathymetry, side-scan sonar imagery, submersible observations, and seismic data. The deep-sea channel can be divided into three segments according to the downslope gradient and channel orientation. They are the Zenisu Canyon, the E–W fan channel, and the trough-axis channel. The sediment fill is characterized by turbidite and debrite deposition and blocky–hummocky avalanche deposits on the flanks of the Zenisu Ridge. In the Zenisu Canyon and the Zenisu deep-sea channel, sediment transport by turbidity currents generates sediment waves (dunes) observed during the Shinkai 6500 dive 371. The development of the Zenisu Canyon is controlled by a N–S shear fault, whereas the trough-axis channel is controlled by basin subsidence associated with the Zenisu Ridge. The E–W fan channel was probably affected by the E–W fault and the basement morphology.  相似文献   
37.
We study the rate of radial diffusion of planetesimals due to mutual gravitational encounters under Hill’s approximations in the three-body problem. Planetesimals orbiting a central star radially migrate inward and outward as a result of mutual gravitational encounters and transfer angular momentum. We calculate the viscosity in a disk of equal-sized planetesimals due to their mutual gravitational encounters using three-body orbital integrations, and obtain a semianalytic expression that reproduces the numerical results. We find that the viscosity is independent of the velocity dispersion of planetesimals when the velocity dispersion is so small that Kepler shear dominates planetesimals’ relative velocities. On the other hand, in high-velocity cases where random velocities dominate the relative velocities, the viscosity is a decreasing function of the velocity dispersion, and is found to agree with previous estimates under the two-body approximation neglecting the solar gravity. We also calculate the rate of radial diffusion of planetesimals due to gravitational scattering by a massive protoplanet. Using these results, we discuss a condition for formation of nonuniform radial surface density distribution of planetesimals by gravitational perturbation of an embedded protoplanet.  相似文献   
38.
Time-dependent wind drift currents in a basin with finite depth have been solved analytically in order to understand their fundamental behavior in coastal waters. The drift currents due to the land/sea breeze, as a typical example of time-dependent winds, have been examined with attention to the manner of their oscillation in their vertical profiles. The theoretical analysis indicates that the drift current due to the land/sea breeze might be amplified effectively around the southern part of Japan, where the oscillating period of the wind is near to the inertial period. The analysis of the physical process of the drift current reveals the following two important aspects: the Ekman boundary layer in a rotating frame is physically consistent with the Stokes boundary layer due to oscillating currents in an inertial frame, and so the inertial motion due to the wind is dispersed to the deeper level by the vertical viscosity in a rotating frame. The harmonic analysis was performed for the residual data after removal of the four main tidal constituents, M2, S2, K1 and O1, from the raw data observed in Suonada sound, the Seto Inland Sea. The feature of the analytically solved drift currents corresponded well to the observed picture. The vertical viscosity in this field has been estimated at 10−3 m2/s by adjusting the harmonically analytical result of the observed data to the vertical profile of the analytically solved drift current.  相似文献   
39.
As planetary embryos grow, gravitational stirring of planetesimals by embryos strongly enhances random velocities of planetesimals and makes collisions between planetesimals destructive. The resulting fragments are ground down by successive collisions. Eventually the smallest fragments are removed by the inward drift due to gas drag. Therefore, the collisional disruption depletes the planetesimal disk and inhibits embryo growth. We provide analytical formulae for the final masses of planetary embryos, taking into account planetesimal depletion due to collisional disruption. Furthermore, we perform the statistical simulations for embryo growth (which excellently reproduce results of direct N-body simulations if disruption is neglected). These analytical formulae are consistent with the outcome of our statistical simulations. Our results indicate that the final embryo mass at several AU in the minimum-mass solar nebula can reach about ∼0.1 Earth mass within 107 years. This brings another difficulty in formation of gas giant planets, which requires cores with ∼10 Earth masses for gas accretion. However, if the nebular disk is 10 times more massive than the minimum-mass solar nebula and the initial planetesimal size is larger than 100 km, as suggested by some models of planetesimal formation, the final embryo mass reaches about 10 Earth masses at 3-4 AU. The enhancement of embryos’ collisional cross sections by their atmosphere could further increase their final mass to form gas giant planets at 5-10 AU in the Solar System.  相似文献   
40.
A hydrographic survey and a 25-hour stationary observation were carried out in the western part of Suo-Nada in the summer of 1998 to elucidate the formation mechanism of the oxygen-deficient water mass. A steep thermocline and halocline separated the upper layer water from the bottom water over the observational area except for near the Kanmon Strait. The bottom water, in comparison with the upper layer water, indicated lower temperature, higher salinity, lower dissolved oxygen, higher turbidity, and higher chlorophyll a. Turbidity in the upper layer water changed with semi-diurnal period while the bottom water turbidity showed a quarter-diurnal variation, though the M2 tidal current prevailed in both waters. From the turbidity distribution and the current variation, it is revealed that the turbidity in the upper layer water is controlled by the advection due to the M2 tidal current. On the other hand, the quarter-diurnal variation in the bottom water turbidity is caused by the resuspension of bottom sediments due to the M2 tidal current. The steep thermocline and halocline were maintained throughout the observation period in spite of the rather strong tidal currents. This implies an active intrusion of the low temperature and high salinity water from the east to the bottom of Suo-Nada. Based on the observational results, a hypothesis on the oxygen-deficient water mass formation was proposed; the periodical turbidity variation in the bottom water quickly modifies the oxygen-rich water in the east to the oxygen-deficient bottom water in Suo-Nada in a course of circulation.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号